~

Data Structures and
Algorithms for Information

Processing

Lecture 12: Sorting

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

)i

Outline

e Correctness proof digression

e Consider various sorts, analyze

e Insertion, Selection, Merge, Radix
e Upper & Lower Bounds

e Indexing

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

What Does This Method
Compute?

A proof of
termination
int doubleTheNumber (int m) { is needed.
int n = m;
while(n > 1) {
if (n $2==0) n=n/ 2;
elsen=3*n+ 1;

}

return 2 * m;

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

)i g

The Jar Game

A jar contains n >= 1 marbles. Each is of
color red or of blue. Also we have an
unlimited supply of red marbles.

Will the following algorithm terminate?

From http://www.cs.uofs.edu/~mccloske/courses/cmpsl44/invariants lec.html

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

The Jar Game

while (# of marbles in the jar > 1) {
choose (any) two marbles from the jar;
if (the two marbles are of the same color)
{ toss them aside;
place a RED marble into the jar;
}
else {
toss the chosen RED marble aside;
place the chosen BLUE marble back
into the jar;

} }

http://www.cs.uofs.edu/~mccloske/courses/cmpsl44/invariants lec.html

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Find A Loop Invarient

e Can we find a loop invariant that will
help us to prove the following theorem:

The last remaining ball will be blue if
the initial number of blue balls was odd
and red otherwise.

From http://www.cs.uofs.edu/~mccloske/courses/cmpsl44/invariants lec.html

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Intuitive Introduction

Main’ s slides from Chapter 12

90-723: Data Structures .
and Algorithms for Lecture 12: Sorting
Information Processing

)i

..%5C..%5C..%5C..%5CTEMP%5CContent.IE5%5CC1M3456V%5CMain_JAVA12.ppt

Insertion Sort

Consider each item once, insert into growing sorted
section.

void insertionSort(int A[]) {
for (int i=1; i<A.length; i++)
for (int j=i; j>0 && A[j]1<A[j-1]1; JF--)
swap (A[j],A[j-11);

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Insertion Sort

void insertionSort(int A[]) {
for(int i=1; i<A.length; 1i++)
for (int j=i; >0 && A[jl<A[j-1]; J--)
swap (A[j],A[j-1]);

e runs in ®(n%), where n = A.length.

o If A is sorted already, runs in ® (n).

e Use if you' re in a hurry to code it , and speed is
not an issue.

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Proving Insertion Sort Correct
What is the invariant?

void insertionSort(int A[]) {

for(int i=1; i < A.length; i++)
for (int j=i; j>0 && A[jI<A[j-1 Jj--)
swap (A[j],A[j-1]1);
| -
0 i n

(VO<t<u<i)A[t] < Au]]

i=1, it’ s trivially true, When when i=n, array is sorted.

)i

90-723: Data Structures .
and Algorithms for Lecture 12: Sorting
Information Processing

Now consider inner loop

void insertionSort(int A[]) {
for(int i=1; i < A.length; i++)
for (int j=i; jJ>0 && A[jI<A[j-11; F--)
swap (A[j],A[j-1]);

0 3 i n
(VO<t<u<|)JA[t]<AJul]A(Vj< v <w <i)A[v] < Aw]]

Trivially true when j=i, and implies outer loop
invariant when it exits.

90-723: Data Structures .
and Algorithms for Lecture 12: Sorting
Information Processing

What happens inside inner loop?

void insertionSort(int A[]) {
for(int i=1; i < A.length; i++)
for(int j=i; j>0 && A[jl<A[j-1]1; j--)

swap (A[j],A[]J-11); ”””:::>
}

< |
0 I i
<x?
no — ¥ — — yes, then swap
S S YX S
u u j_l
exit inner loop j--, continue loop

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

What is the Average Time

for Insertion Sort?
(Best is ® (n), Worst is © (n?))

e Running time is proportional to number of swaps.

e Each swap of adjacent items decreases disorder by
one unit where

disorder = number of i<j such that A[i]>A[]j]

e Therefore running time is proportional to disorder
and average running time is proportional to average
disorder.

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Average disorder

Sequence | disorder | Reversed | disorder
Sequence

1234 0 4321 6
1243 1 3421 5
1324 1 4231 5
1342 2 2431 4
1423 2 3241 4
1432 3 2341 3
2134 1 4312 5
2143 2 3412 4
2314 2 4132 4
2413 3 3142 3
3124 2 4213 4
3214 3 4123 3
22 50

for n=4 Average disorder = 72/24 = 3

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

What is the Average Disorder?

Theorem: The average disorder for a sequence of n
items is n(n-1)/4

Proof. Assume all permutations of array A equally
likely. If AR is the reverse of A, then disorder(A) +
disorder(AR) = n(n-1)/2 because A[i]<A[]j] iff
ARTi1>AR[j]. Thus the average disorder over all
permutations is n(n-1)/4.

Corollary. The average running time of any sorting
program that swaps only adjacent elements is Q (n2).

Proof: It will have to do n(n-1)/4 swaps and may
waste time in other ways.

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

To better ®(n¢) we must
compare non-adjacent
elements

Shell Sort: Swa
Heap Sort: Swa
QuickSort: Swa

)i g

D elements n/2, n/4, ... apart
0 A[i] with Ali/2]

h around “median”

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Idea of Merge Sort

e Divide elements to be sorted into two
groups of equal size

e Sort each half

e Merge the results using a simultaneous
pass through each

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Psuedocode for Merge Sort

void mergesort(int data[], int first, int n) {
if (n>1){
int n1 =n/2;
intn2 =n-nt;
mergesort(data, first, n1);
mergesort(data, first+n1, n2);
merge(data, first, n1, n2);

}
}

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

How fast could a sort that uses
binary comparisons run?

Consider 4 numbers, a, b, ¢, d. Merge Sort
approach:

a<b?
Y n
c<d”? c<d?
y n y n b<a&d<c
c<a®? d<a? c<b? d<b?
y n y n Y ny n
c<a<b&c<d a<b&asc<d b<asb<d<c

d<b<a&d<c

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

)i g

Ask only questions you don't
know answers to.

a<b?
' n
c<d? c<d?
b<a&d<c
c<a? d<a-? c<b? d<b?
c<a<bé&c<d a<bé&as<c<d d<b<aé&d<c b<a&b<d<c
b<c?
a<b<c<d a<b & a<c<d & cb
4 compares
b<d?
as<c<b<d a<c<d<b

00-723: DRLOMPALES |
and Algorithms for Lecture 12: Sorting
Information Processing

)i g

A different strategy, insertion
sorts, may get lucky.

a<b?

b<c?

c<d?

a<b<c<d

3 compares

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

)i

But it may be unlucky.

a<b?
Y n
b<c?
a<b & cb
c<d-?
a<lc?
a<b<c<d
c<a<b
b<d-?
d<b & c<a<b
a<d-?
6 compares 3Ea & c<a<b
90-723: Data Structures _ C<d?
and Algorithms for Lecture 12: Sorting
Information Processing d<c<a<b

Consider all possible sorting trees.

How many leaves must a sorting tree have to
distinguish all
possible orderings of n items?

a[0]<a[l]

VN

90-723: Data Structures .
and Algorithms for Lecture 12: Sorting
Information Processing

)i

How many leaves must there for a
sorting tree for n items?

a[0]<a[l]

SN

n!, the number of different permutations.

)i g

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Theorem: A binary tree with K leaves must have
depth at least [log, K]. In other words, a BT with k
leaves and depth d has d >=[log, K| or K <= 2¢

Proof. Prove by induction that a tree of depth d can
have at most, 29 leaves.

Base: for d=0, there is 1 |eaf.

Suppose true for d, consider tree of depth d+1.

BIH: x and y have at most 29 leaves so whole tree has at
most 2*2d = 2d+1 |eaves.

Now the shortest trees with K leaves must be “perfect”
and their depth will be [log, K|

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

So a tree with n! leaves has depth at least Ig n!.
Notice that depth = the maximum number of
tests one might have to perform.

Ig n! = Ig n(nh-1)(n-2)...1
=Ilgn+Ign-1+Iign-2+ ..+1g1
>Ilgn+ ..+ 1g(n/2)
> (n/2) Ig(n/2)
>(n/2)Ilgn-n/2
= Q(n lg n)

So any sort algorithm takes Q(n Ig n)

comparisons.

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Is there a way to sort without
using binary comparisons?

Ternary comparisons, K-way comparisons.

The basic Q(n log n) result will still be true, because
Q(log, x)= Q(logy X).

Useful speed-up heuristic: use your data
as an index of an array.

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

)i

Consider sorting tray of
letters

int counts[26];
int J = 0;
for (int i1i=0; i<26; i++) counts[i]=0;
for (j=0; j<tray.length; j++)
count[tray[j]- a’]++;
J=0;
for (int i=0; 1<26; i++)
while (count[i]-- > 0) tray[j++]=i+ a’;

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Sorting tray of letters

int counts[26];

int j = 0;

for(int i=0; 1<26; i++) counts[i]=0;

for (jJj=0; j<tray.length; j++)
count[tray[j]- a’]++;

J=0;

for (int i=0; i<26; i++)

while (count[i]-- > 0) tray[j++]=i+ a’;

if tray = “abbcabbdaf”
count ={3,4,1,1,0,1,0, ..., 0}

and new tray = “aaabbbbcdf”

Running time is ®(26+tray.size()), i.e. linear!

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Why does this beat n log n?

e The operation count[tray[j]]1++ is like

a 26-way test; the outcome depends
directly on the data.

e This is “cheating” because it won't
work if the data range grows from 26 to
232,

e Technique can still be useful — can

break up range into “buckets” and use
mergesort on each bucket

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Radix Sort

A way to exploit the data-driven idea for large data
spaces.

Idea: Sort the numbers by their /owest digit. Then
sort them by the next lowest digit, being careful to
break ties properly. Continue to highest digit.

4597 3480 2009 109
2132, 9241 109 456
486| 8721 2132 1908
1908 3%21 41 2009
3486 2132 97 2132
9241 6 56 3297

109| 3486 56 3456
5789 4%97 80 3480
3297 3297 21 3521
2009 1908 67 4567
8741 9 721 5789
35 5789 789 8721
3480 2009 1908 9241

90-723: Data Structuies
| - ~ L oAb iiam 4D C H
and Algorithms for Lectuire 12: Sorting
Information Processing

Radix Sort

e Fach sort must be stable
The relative order of equal keys is
preserved

e In this way, the work done for earlier
bits is not “undone”

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Radix Sort

Informal Algorithm:

To sort items A[i] with value 0...232-1 (= INT_MAX)
e Create a table of 256 buckets.

e {For every A[i] put it in bucket A[i] mod 256.

e Take all the items from the buckets 0O,..., 255 in a FIFO
manner, re-packing them into A.}

e Repeat using A[i]/256 mod 256

e Repeat using A[i]/2562 mod 256
e Repeat using A[i]/2563 mod 256
e This takes O(4*(256+A.length))

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Radix Sort using Counts

The Queues can be avoided by using counts:

Let N= number of elements in array a
Array a is indexed from 1 to N
et w = the number of bits in ali]

et m = number of bits examined per
DASS

et M = 27m patterns to count

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Radix Sort using Counts

The Queues can be avoided by using counts:

vold RadixSort (int a[], int b[], int N) {
int 1, Jj, pass, count[M];
for (pass=0; pass < (w/m); pass++) {
for (3j=0; 37 < M; Jj++) count[j] = 0;
for (i=1; 1 <= N; i++)
countf[ali] .bits(pass*m, m)]++;
for (j=1; J < M; J++)
count[j] = count[j-1] + count[j];
for (i=N; 1 >= 1; i--)
blcount[a[il] .bits(pass*m,m)]--] = al[i];
for (i=1; 1 <= N; i++) al[i] = b[i];

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

)i g

Radix Sort using Queues

const int BucketCount = 256;
vold RadixSort (vector<int> &A) {
vector<queue<int> > Table (BucketCount) ;

int passes = ceil(log(INT_MAX)/log(BucketCount));

int power = 1;
for (int p=0; p<passes;p++) {
int 1i;
for (i=0; 1i<A.size(); 1++) {
int item = A[i];
int bucket = (item/power) % BucketCount;

Table[bucket] .push (item) ;
}

i =0;
for (int b=0; b<BucketCount; b++)
while (!Table[b] .empty()) {
A[i++] = Table[b].front(); Table[b].pop();

}

power *= BucketCount;

} }
90-723: Data Structures _
and Algorithms for Lecture 12: Sorting

Information Processing

Radix Sort

In general it takes time

®(Passes*(NBuckets+A.length))

where Passes=
[log(INT_MAX)/log(NBuckets) |

Suppose we have n 4 digit numbers to sort and
1 bucket for each digit.

Passes = ceil(10g1¢(9999)/log,,(10)) = 4
®(4 * (10 + n))
It needs ®(A.length) in extra space.

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

Next Time

e The next topic will be Quicksort, a very
fast, practical, and widely used
algorithm

90-723: Data Structures _
and Algorithms for Lecture 12: Sorting
Information Processing

)i g

